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t. Model 
he
king of software programs has twogoals: one is the veri�
ation of 
orre
t software. Theother is the dis
overy of errors in faulty software. Somete
hniques for dealing with the most 
ru
ial problemin model 
he
king, the state spa
e explosion problem,
on
entrate on the �rst of these goals. In this paper wepresent an array of heuristi
 model 
he
king te
hniquesfor 
ombating the state spa
e explosion when sear
hingfor errors. Previous work on this topi
 has mostly fo-
used on property-spe
i�
 heuristi
s 
losely related toparti
ular kinds of errors. We present stru
tural heuris-ti
s that attempt to explore the stru
ture (bran
hingstru
ture, thread inter-dependen
y stru
ture, abstra
-tion stru
ture) of a program in a manner intended toexpose errors eÆ
iently. Experimental results show theutility of this 
lass of heuristi
s. In 
ontrast to these verygeneral heuristi
s, we also present very lightweight te
h-niques for introdu
ing program-spe
i�
 heuristi
 guid-an
e.1 Introdu
tionThere has been re
ent interest in model 
he
king soft-ware written in real programming languages [3,11,24,34,35,52℄. The primary 
hallenge in software model 
he
k-ing, as in all model 
he
king, is the state spa
e explosionproblem: exploring all of the behaviors of a system is,to say the least, diÆ
ult when the number of behaviorsis exponential in the possible inputs, 
ontents of datastru
tures, or number of threads in a program. A vastarray of te
hniques have been applied to this problem [9℄,�rst in hardware veri�
ation, and now, in
reasingly, insoftware veri�
ation [3,11,31℄. Many of these te
hniquesrequire 
onsiderable non-automati
 work by experts ordo not apply as well to software as to hardware. Most

of these te
hniques are aimed at redu
ing the size of thetotal state spa
e that must be explored, or represent-ing it symboli
ally so as to redu
e the memory and timeneeded for the exploration.Abstra
tion te
hniques (and spe
i�
ally predi
ate ab-stra
tion [26℄) have proven to be useful for software model
he
king [3,31℄. However, applying su
h abstra
tions isexpensive if the number of predi
ates required be
omeslarge and determining whether an abstra
t behavior isalso possible in the 
on
rete program 
an be unde
id-able. These te
hniques have therefore been used mostlyto show properties dependent on the 
ontrol-
ow of aprogram rather than to analyze systems where the prop-erties depend on data|e.g. show rea
hability of a state-ment or that a spe
i�
 sequen
e of API 
alls are possible,rather than show that a real-time s
heduler will alwaysallo
ate ea
h thread its requested time.An alternative approa
h is to 
on
entrate not on ver-ifying the 
orre
tness of programs but on dealing withthe state spa
e explosion when attempting to �nd er-rors. Rather than redu
ing the overall size of the statespa
e, we 
an attempt to �nd a 
ounterexample beforethe state explosion exhausts memory. Therefore produ
-ing a 
ounterexample 
an be seen as sear
hing throughthe state spa
e of a system for a spe
i�
 (error) behavior.Rather than blindly sear
hing through the state-spa
e,as is 
ommon for traditional model 
he
king, we 
an thenfo
us on using heuristi
s to guide the sear
h. Heuristi
model 
he
king therefore aims at generating 
ounterex-amples by sear
hing the bug-
ontaining part of the statespa
e �rst. Obviously we do not know, in general, whatpart of a program's state spa
e is going to 
ontain anerror, or even if there is an error present.A separate motivation for heuristi
 sear
h in bug-�nding is that although one of the strongest advantagesof model 
he
king is the generation of 
ounterexampleswhen veri�
ation fails, traditional depth-�rst sear
h al-gorithms tend to return very long 
ounterexamples; heuris-
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 sear
h, when it su

eeds, almost always produ
esmu
h more su

in
t 
ounterexamples.The use of heuristi
s in model 
he
king has so farmostly fo
used on using the property to be 
he
ked as ameasure for guiding the sear
h [14,25,32,40,54℄. Unfor-tunately, unlike in more traditional optimization prob-lems in whi
h heuristi
s are more 
ommonly used, it isnot always possible to know during model 
he
king how
lose one is to a property being violated. Measurementsof distan
e to assertion statements, possible un
aughtex
eptions, or deadlo
ks require a 
on
entration on aparti
ular error. In a large program with many possi-ble errors, this results in either a sear
h for ea
h pos-sible error or a heuristi
 that may be hopelessly 
on-
i
ted (for example, if every thread 
ontains an asser-tion, the heuristi
 will be trying to move forward onea
h thread). In this paper we propose also using thestru
ture of programs to develop heuristi
s to guide thesear
h. In parti
ular we show how stru
tural 
overageand thread-interdependen
e 
an be used as heuristi
s formodel 
he
king. Furthermore, to illustrate that heuris-ti
s 
an also be used during abstra
tion-based model
he
king, we propose a heuristi
 that will redu
e falsepositive results (errors that are possible in the abstra
tprogram, but not possible in the 
on
rete), by always�rst sear
hing for errors in the portion of the state spa
ewhere no infeasible behaviors exist.We believe one of the most interesting aspe
ts ofheuristi
 model 
he
king is to learn from previous analy-ses whi
h heuristi
 is best-suited to dis
overing an errorin a program. To illustrate the vision, we show how aheuristi
 that favors the exe
ution of a subset of threadsin a program 
an be 
alibrated by sele
ting threads thatformed part of ra
e-violation (dis
overed during a pre-vious model 
he
king run)|the reasoning being that ara
e violation 
an lead to something more severe (whi
hit did, sin
e a deadlo
k was thus dis
overed).Finally, we believe that the tester (or developer) us-ing the model 
he
ker will in all likelihood know moreabout the overall stru
ture of the program and in whi
hparts there might be errors lurking than 
an be dis
ov-ered automati
ally. Therefore, it is important to allow foruser-de�ned heuristi
s. We propose an approa
h wherethe user 
an de�ne a new heuristi
 fun
tion, or take amore light-weight approa
h and simply annotate the pro-gram with statements that the model 
he
ker 
an useduring analysis to indi
ate whi
h parts of the state spa
eare most interesting to explore.The 
ontributions of the paper are:{ A suggested 
ombination of property-based, stru
-tural and user-de�ned heuristi
s.{ Des
ription of a set of stru
tural heuristi
s that ex-ploit stru
tural 
overage, 
on
urren
y stru
tures, andstru
tures indu
ed by applying abstra
tions beforemodel 
he
king.

{ Experimental results for the new heuristi
s withinthe 
ontext of error-dete
tion with Java PathFinder(JPF) [52℄.The paper is organized as follows. Se
tion 2 des
ribesheuristi
 model 
he
king and presents the basi
 algo-rithms involved. Se
tion 3 presents the Java PathFindermodel 
he
ker and the implementation of heuristi
 sear
h.Stru
tural heuristi
s are de�ned and des
ribed in detailin Se
tion 4, whi
h also in
ludes experimental results.Se
tion 5 presents user-guided heuristi
s and heuristi
annotations. The now 
onsiderable body of literature onheuristi
 model 
he
king is des
ribed in se
tion 6. Wepresent our 
on
lusions and 
onsider future work in a�nal se
tion.2 Heuristi
 Model Che
kingIn heuristi
 or dire
ted model 
he
king, a state spa
e isexplored in an order dependent on an evaluation fun
-tion for states. This fun
tion (the heuristi
) is usuallyintended to guide the model 
he
ker more qui
kly toan error state. Any resulting 
ounterexamples will of-ten be shorter than ones produ
ed by the depth-�rstsear
h based algorithms traditionally used in expli
it-state model 
he
kers. Heuristi
 model 
he
king is a grow-ing �eld; we dis
uss the large body of related work inSe
tion 6.2.1 Sear
h AlgorithmsA number of di�erent sear
h algorithms 
an be 
ombinedwith heuristi
s. All share a 
ommon stru
ture: a �tnessf is 
omputed for ea
h state generated by the model
he
ker, and then the values for f are used to determinewhi
h states are explored next. The sear
hes all termi-nate if a goal is rea
hed (for our purposes, if a propertyviolation is dete
ted). f 's value will be derived from aheuristi
 fun
tion h evaluating the state. Be
ause manyof the heuristi
 fun
tions we use take into a

ount thepath by whi
h a state was rea
hed or other sear
h-levelinformation, the primary distin
tion between f and h inthis paper is that f is used to introdu
e sear
h-strategyspe
i�
 modi�
ations to heuristi
s that are always 
om-puted in the same fashion for any of these algorithms.The simplest of heuristi
 sear
h algorithms is a best-�rst sear
h, whi
h uses the heuristi
 fun
tion h to 
om-pute a �tness f in a greedy fashion (Figure 1).The A� algorithm [29℄ is similar, ex
ept that likeDijkstra's shortest paths algorithm, it adds the lengthof the path to S0 to f (f = h(S0) + path-length(S0)rather than f = h(S0)). When the heuristi
 fun
tion his admissible, that is, when h(S0) is guaranteed to be lessthan or equal to the length of the shortest path from S0to a goal state, A� is guaranteed to �nd an optimal solu-tion (for purposes of model 
he
king, the shortest 
oun-
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king Java Programs 3priority queue Q = finitial stategwhile (Q not empty)S = state in Q with best fremove S from Qfor ea
h su

essor state S0 of Sif S0 not already visitedif S0 is the goalterminatef = h(S0)store (S0; f) in QFig. 1. Algorithm for best-�rst sear
h.queue Q = finitial stategwhile (Q not empty)while (Q not empty)priority queue Q0 = ;remove S from Qfor ea
h su

essor state S0 of Sif S0 not already visitedif S0 is the goalterminatef = h(S0)store (S0; f) in Q0remove all but k best elements from Q0Q = Q0Fig. 2. Algorithm for beam sear
h.terexample). A� is a 
ompromise between the guaran-teed optimality of breadth-�rst sear
h and the eÆ
ien
yin returning a solution of best-�rst sear
h.Beam-sear
h pro
eeds even more like a breadth-�rstsear
h, but uses the heuristi
 fun
tion to dis
ard all butthe k best 
andidate states at ea
h depth (Figure 2).Beam-sear
h, therefore, 
an only be used to dis
overerrors|termination of a beam sear
h without dis
ov-ering an error does not imply 
orre
tness of the system.The queue-limiting te
hnique used in beam-sear
hmay also be applied to a best-�rst or A� sear
h by re-moving the worst state from Q (without expanding its
hildren) whenever inserting S0 results in Q 
ontainingmore than k states. This, again, introdu
es an in
om-pleteness into the model 
he
king run: termination with-out reported errors does not indi
ate that no errors existin the state spa
e. However, given that the advantage ofheuristi
 sear
h is its ability to qui
kly dis
over fairlyshort 
ounterexamples, in pra
ti
e queue-limiting is avery e�e
tive bug-�nding ta
ti
.The experimental results in Se
tion 4 show the vary-ing utility of the di�erent sear
h strategies. Be
ause noneof the heuristi
s we examine are admissible, A� la
ks atheoreti
al optimality, and is generally less eÆ
ient thanbest-�rst sear
h. The heuristi
 value is sometimes mu
hlarger than the path length, in whi
h 
ase A� behavesmu
h like a best-�rst sear
h.As far as we are aware, 
ombining a best-�rst sear
hwith limitations on the size of the queue for storing states

pending is not dis
ussed or given a name in the litera-ture of heuristi
 sear
h. A best-�rst sear
h with queuelimiting 
an �nd very deep solutions that might be dif-�
ult for a beam-sear
h to rea
h unless the queue limitk is very small. In pra
ti
e, pi
king a k for either typeof sear
h is done by a hand approximation of iterativewidening [50℄.Introdu
tion of queue-limiting to heuristi
 sear
h formodel 
he
king raises the possibility of using other in-
omplete methods when the fo
us of model 
he
king ison dis
overy of errors rather than on veri�
ation. Asan example, partial order redu
tion te
hniques usuallyrequire a 
y
le 
he
k that may be expensive or over-
onservative in the 
ontext of heuristi
 sear
h [15℄. How-ever, on
e queue-limiting is 
onsidered, it is natural toexperiment with applying a partial order redu
tion with-out a 
y
le 
he
k. The general approa
h remains one ofmodel 
he
king rather than testing be
ause storing ofstates already visited is 
ru
ial to obtaining good resultsin our experien
e, with one notable ex
eption (see thedis
ussion in se
tions 4.1.2 and 4.2.1).3 Java PathFinderJava PathFinder (JPF) is an expli
it state on-the-
ymodel 
he
ker that takes 
ompiled Java programs (i.e.byte
ode 
lass-�les) and analyzes all paths through theprogram for deadlo
k, assertion violations and linear timetemporal logi
 (LTL) properties [52℄. JPF is unique inthat it is built on a 
ustom-made Java Virtual Ma
hine(JVM) and therefore does not require any translation toan existing model 
he
ker's input notation. The dSPINmodel 
he
ker [35℄ that extends SPIN [33℄ to handledynami
 memory allo
ation and fun
tions is the most
losely related system to the JPF model 
he
ker.Java does not support nondeterminism, but in a model
he
king 
ontext it is often important to analyze the be-havior of a program in an aggressive environment whereall possible a
tions, in any order, must be 
onsidered.For this reason, methods in a spe
ial Verify 
lass allowprograms to express nondeterminism. For example, Ver-ify.random(2) will nondeterministi
ally return a valuein the range 0{2, in
lusive, whi
h the model 
he
ker 
anthen trap during exe
ution and evaluate with all possiblevalues.An important feature of the model 
he
ker is the 
ex-ibility in 
hoosing the granularity of a transition betweenstates during the analysis of the byte
ode. Sin
e themodel 
he
ker exe
utes byte
ode instru
tions, the most�ne-grained analysis supported is at the level of indi-vidual byte
odes. Unfortunately, for large programs thebyte
ode-level analysis does not s
ale well, and thereforethe default mode is to analyze the 
ode on a line-by-linebasis. JPF also supports atomi
 
onstru
ts (denoted byVerify.beginAtomi
() and Verify.endAtomi
() 
alls)
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king Java Programsthat the model 
he
ker 
an trap to allow larger 
ode frag-ments to be grouped into a single transition.The model 
he
ker 
onsists of two basi
 
omponents:State Generator - This in
ludes the JVM, informationabout s
heduling, and the state storage fa
ilities re-quired to keep tra
k of what has been exe
uted andwhi
h states have been visited. The default explo-ration in JPF is to do a depth-�rst generation of thestate spa
e with an option to limit the sear
h to amaximum depth. By 
hanging the s
heduling infor-mation, one 
an 
hange the way the state spa
e isgenerated - by default a sta
k is used to re
ord thestates to be expanded next, hen
e the default DFSsear
h.Analysis Algorithms - This in
ludes the algorithms for
he
king for deadlo
ks, assertion violations and vio-lation of LTL properties. These algorithms work byinstru
ting the state generation 
omponent to gen-erate new states, ba
ktra
k from old states, and 
an
he
k on the state of the JVM by doing API 
alls(e.g. to 
he
k when a deadlo
k has been rea
hed).The heuristi
s in JPF are implemented in the StateGenerator 
omponent, sin
e many of the heuristi
s re-quire information from the JVM and a natural way to dothe implementation is to adapt the s
heduling of whi
hstate to explore next (e.g. in the trivial 
ase, for a breath-�rst sear
h one 
hanges the sta
k to a queue). Best-�rst(also used for A�) and beam-sear
h are straightforwardimplementations of the algorithms listed in Se
tion 2.1,using priority queues within the s
heduler. The heuristi
sear
h 
apabilities are 
urrently limited to deadlo
k andassertion violation 
he
ks|none of the heuristi
 sear
halgorithms are parti
ularly suited to 
y
le dete
tion, whi
his an important part of 
he
king LTL properties. In addi-tion, the limited experimental data on improving 
y
lesin 
ounterexamples for liveness properties is not en
our-aging [16℄.Heuristi
 sear
h in JPF also provides a number ofadditional features, in
luding:{ users 
an introdu
e their own heuristi
s (interfa
ingwith the JVM through a well-de�ned API to a

essprogram variables et
.){ the sum of two heuristi
s 
an be used{ the order of analysis of states with the same heuristi
value 
an be altered{ the number of elements in the priority queue 
an belimited{ the sear
h depth 
an be limited{ dynami
 annotations in the sour
e 
ode 
an 
ausethe model 
he
ker to in
rease or de
rease heuristi
values or even remove parts of the sear
h spa
e4 Stru
tural Heuristi
sHeuristi
s 
an be used in symboli
 model 
he
king toredu
e the bottlene
ks of image 
omputation, without

ne
essarily attempting to zero in on errors; Bloem, Raviand Somenzi thus draw a distin
tion between property-dependent and system-dependent heuristi
s [5℄. They notethat only property-dependent heuristi
s 
an be appliedto expli
it-state model 
he
king, in the sense that explor-ing the state spa
e in a di�erent order will not removebottlene
ks in the event that the entire spa
e must be ex-plored. We suggested a further 
lassi�
ation of property-dependent heuristi
s into property-spe
i�
 heuristi
s thatrely on features of a parti
ular property (queue sizes orblo
king statements for deadlo
k, distan
e in 
ontrol ordata 
ow to false valuations for assertions) and stru
-tural heuristi
s that attempt to explore the stru
ture ofa program in a way 
ondu
ive to �nding more generalerrors [28℄. The heuristi
 used in FLAVERS would be anexample of the latter [10℄.Previous work on model 
he
king using heuristi
slargely 
on
entrates on property-spe
i�
 heuristi
s [14,25,32,40,54℄. Common heuristi
s in
lude measuring thelengths of queues, giving preferen
e to blo
king opera-tions [14,40℄, and using a Hamming distan
e to a goalstate [16,54℄. Heuristi
s tailored to mat
h a property orderived stati
ally from a 
ombination of the sour
e 
odeand the property (su
h as distan
e to assertions or asear
h for over
ow of a parti
ular bu�er) are 
ertainlyuseful. However, when a model 
he
ker is applied to alarge 
on
urrent program with many assertions and thepotential for deadlo
ks and un
aught ex
eptions, it isun
lear how to pi
k a property-spe
i�
 heuristi
. Ratherthan looking for a spe
i�
 error, it may be best to tryto explore the stru
ture of the program systemati
ally,looking for any kind of error. As we note below, this isthe motivation behind 
overage metri
s in testing.We 
onsider the following heuristi
s to be stru
turalheuristi
s be
ause they explore some stru
tural aspe
t ofthe program (bran
hing, thread-interdependen
e, et
.)independent of any spe
i�
 property.4.1 Code Coverage Heuristi
sThe 
ode 
overage a
hieved during testing is a measureof the adequa
y of the testing|or, in other words, ofthe quality of the set of test 
ases. Although it does notdire
tly address the 
orre
tness of the 
ode under test,having a
hieved high 
ode 
overage during testing with-out dis
overing any errors does inspire more 
on�den
ethat the 
ode is 
orre
t. A 
ase in point is the avioni
sindustry where software 
an only be 
erti�ed for 
ightif 100% stru
tural 
overage, spe
i�
ally modi�ed 
on-dition/de
ision 
overage (MC/DC), is a
hieved duringtesting [47℄.In the testing literature there are a vast number ofstru
tural 
ode 
overage 
riteria, from simply 
overingall statements in the program to 
overing all possibleexe
ution paths. Here we will fo
us on bran
h 
over-age, whi
h requires that at every bran
hing point in theprogram all possible bran
hes be taken at least on
e.
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king Java Programs 5In many industries 100% bran
h 
overage is 
onsidereda minimum requirement for test adequa
y [4℄. On thefa
e of it, one might wonder why 
overage during model
he
king is of any value, sin
e model 
he
kers typi
ally
over all of the state spa
e of the system under analy-sis, hen
e by de�nition 
overing all the stru
ture of the
ode. However, when model 
he
king Java programs theprograms are often in�nite-state, or have a very large�nite state spa
e, whi
h the model 
he
ker 
annot 
overdue to resour
e limitations (typi
ally memory). Cal
u-lating 
overage therefore serves the same purpose as dur-ing testing: it shows the adequa
y of the (partial) model
he
king run.As with test 
overage tools, 
al
ulating bran
h 
ov-erage during model 
he
king only requires us to keeptra
k of whether at ea
h stru
tural bran
hing point alloptions were taken. Sin
e JPF exe
utes byte
ode state-ments, this means simple extensions need to be intro-du
ed whenever IF* (related to any if-statement in the
ode) and TABLESWITCH (related to 
ase-statements) areexe
uted to keep tra
k of the 
hoi
es made. However,unlike with simple bran
h 
overage, we also keep tra
kof how many times ea
h bran
h was taken, rather thanjust whether it was taken or not, and 
onsider 
overageseparately for ea
h thread 
reated during the exe
utionof the program. The �rst bene�t of this feature is thatthe model 
he
ker 
an now produ
e detailed 
overageinformation when it exhausts memory without �nding a
ounterexample or sear
hing the entire state spa
e. Ad-ditionally, if 
overage metri
s are a useful measurementof a set of test 
ases, it seems plausible that using 
ov-erage as a heuristi
 to prioritize the exploration of thestate spa
e might be useful.One approa
h to using 
overage metri
s in a heuris-ti
 would be to simply use the per
entage of bran
hes
overed (on a per-thread or global basis) as the heuristi
value (we refer to this as the %-
overage heuristi
). How-ever, this approa
h does not work well in pra
ti
e (seeSe
tion 4.1.2). Instead, a slightly more 
omplex heuristi
proves far more useful:1. States 
overing a previously untaken bran
h re
eivethe best heuristi
 value.2. States that are rea
hed by not taking a bran
h re
eivethe next best heuristi
 value.3. States that 
over a bran
h already taken are rankeda

ording to how many times that bran
h has beentaken (worse s
ores are assigned to more frequentlytaken bran
hes).The motivation behind the bran
h 
ounting heuristi
is to make use of the bran
hing stru
ture of a programwhile avoiding some of the pitfalls of the more dire
theuristi
.The %-
overage heuristi
 is likely to fall into lo
alminima, exploring paths that 
over a large number ofbran
hes but do not in the future in
rease 
overage.The bran
h 
ounting heuristi
 behaves in an essentially

publi
 stati
 void main (String [℄ args) fint x = Verify.random (2);int y = Verify.random (2);for (int i = 0; i < x; i++) fSystem.out.println("x,y,i:" + x + "," + y + "," + i);gfor (int j = 0; j < y; j++) fSystem.out.println("x,y,j:" + x + "," + y + "," + j);ggFig. 3. Example program for the bran
h 
ounting heuristi
.breadth-�rst manner unless a path is a
tually in
reas-ing 
overage. By default, JPF explores states with thesame heuristi
 value in a FIFO manner, resulting in abreadth-�rst exploration of a program with no bran
h
hoi
es. However, if there are bran
h 
hoi
es, the ex-ploration will pro
eed in a manner that is not stri
tlybreadth-�rst. Even after the 
overage 
eases to in
rease,the frontier is mu
h deeper along paths whi
h have pre-viously in
reased 
overage, so the sear
h still advan
esexploration of stru
turally interesting paths over unin-teresting paths.The improved heuristi
 delays exploration of repet-itive portions of the state spa
e (those that take thesame bran
hes repeatedly). Choosing untaken bran
hes(Rule 1) obviously 
annot lead to repetitive explorationof a part of a system's 
ontrol 
ow. While there is noguarantee of novelty in 
hoosing transitions not involv-ing bran
hes (Rule 2), any repetition of these transitionsis presumably guarded by a bran
h. Thus if a nondeter-minisi
 
hoi
e determines how many times to exe
ute aloop, for instan
e, it will delay exploring through mul-tiple iterations of the loop along 
ertain paths until ithas sear
hed further along paths that skip the loop orexe
ute it only on
e. The heuristi
 thus a
hieves deeper
overage of the stru
ture and examines possible behav-iors after termination of the loop. If the paths beyond theloop 
ontinue to be free of bran
hes or involve previouslyun
overed bran
hes, exploration will 
ontinue; however,if one of these paths leads to a loop, exploration willreturn to explore further iterations of the �rst loop be-fore exe
uting the latter loop more than on
e, due to thethird rule.In order to 
larify the 
onsequen
es of this ordering,we present a small example program (Figure 3) and showthe results of using a few di�erent sear
h strategies toexplore it (Table 1). The �rst 
olumn for ea
h sear
h isthe output (in order). Beside ea
h output is the 
ountfor the bran
hes at that point in exe
ution: the �rst twonumbers are the true and false bran
hes for the bran
hon i < x and the se
ond and third numbers are the trueand false bran
hes for j < y. DFS immediately divergesfrom the other two strategies: the model 
he
ker initially



6 Alex Gro
e, Willem Visser: Heuristi
s for Model Che
king Java ProgramsDFS BFS bran
h
ountj:0,1,0 0/2/1/1 i:1,0,0 6/3/2/1 i:1,0,0 1/3/0/1j:0,2,0 0/3/2/2 i:1,1,0 6/3/2/1 j:0,1,0 3/3/1/1j:0,2,1 0/3/3/2 i:1,2,0 6/3/2/1 i:1,1,0 3/3/1/1i:1,0,0 1/3/3/3 i:2,0,0 6/3/2/1 j:0,2,0 6/3/2/1i:1,1,0 2/4/3/4 i:2,1,0 6/3/2/1 i:1,2,0 6/3/2/1j:1,1,0 2/5/4/4 i:2,2,0 6/3/2/1 i:2,0,0 6/3/2/1i:1,2,0 3/5/4/5 j:0,1,0 6/3/2/1 i:2,1,0 6/3/2/1j:1,2,0 3/6/5/5 j:0,2,0 6/3/2/1 i:2,2,0 6/3/2/1j:1,2,1 3/6/6/5 i:2,0,1 9/6/5/3 j:1,1,0 6/5/3/3i:2,0,0 4/6/6/6 i:2,1,1 9/6/5/3 j:0,2,1 6/5/4/3i:2,0,1 5/6/6/6 i:2,2,1 9/6/5/3 j:1,2,0 6/6/5/3i:2,1,0 6/7/6/7 j:0,2,1 9/6/5/3 i:2,0,1 7/6/5/3i:2,1,1 7/7/6/7 j:1,1,0 9/6/5/3 i:2,1,1 8/6/5/3j:2,1,0 7/8/7/7 j:1,2,0 9/6/5/3 i:2,2,1 9/6/5/3i:2,2,0 8/8/7/8 j:1,2,1 9/9/8/6 j:1,2,1 9/6/6/5i:2,2,1 9/8/7/8 j:2,1,0 9/9/8/6 j:2,1,0 9/8/7/6j:2,2,0 9/9/8/8 j:2,2,0 9/9/8/6 j:2,2,0 9/9/8/6j:2,2,1 9/9/9/8 j:2,2,1 9/9/9/8 j:2,2,1 9/9/9/8Table 1. Order of exploration for 
ode in Figure 3.
hooses the pair (0, 0) for (x, y) (whi
h 
auses nothingto be printed, as neither for-loop 
an be entered). Ba
k-tra
king then 
auses the model 
he
ker to 
hoose a se
-ond value for y, resulting in the pair (0, 1). As this isa depth-�rst sear
h, the �rst loop is therefore skippedagain, but the se
ond (j) loop is entered, printing (0, 1,j = 0). BFS and bran
h 
ounting, on the other hand,both �rst show the print statement that 
an be rea
hedin the fewest steps, in the �rst (i) loop. However, they di-verge immediately afterwards. The same print statement
an also be rea
hed at the same sear
h depth with y'svalue being 1. As the bran
h 
ounting heuristi
 alwaysprefers a path with an unexplored bran
h, it �rst showsthe exe
ution where the �rst loop is never exe
uted butthe se
ond is exe
uted on
e. At this point, ea
h bran
hin the loops has been explored by bran
h 
ounting (aswith DFS, the 
ase where both bran
hes are not takenis invisible).Additionally, it is important to note that while BFSand bran
h
ount both display x,y,i:1,0,0 �rst, thebran
h 
overage 
ounts are quite di�erent. In the BFS,all of the possible 
ombinations for x and y are gener-ated and the �rst for loop is exe
uted with ea
h possible
ombination. There are nine possible 
hoi
es for x andy, 6 of whi
h 
ause the true bran
h to be taken and 3 ofwhi
h 
ause the false bran
h to be taken. These have allbeen exe
uted before the �rst print: thus the true bran
hhas been 
overed 6 times and the false bran
h 3 times.In 
ontrast, for bran
h
ount, the print statement is 
ov-ered when the true bran
h has only been exe
uted on
e.BFS, therefore, results in a very stati
 set of 
overages,with only 3 total 
hanges to the 
overage 
ounts for ea
hbran
h. For bran
h
ount, the 
overage numbers 
hangea total of 12 times. While DFS 
hanges 
overage be-tween every two printings, it does so in a non-methodi
al

manner that is weighted towards the false bran
hes|itin
reases the 
ounts, but makes no dire
ted e�ort to in-
rease 
overage. Thus while both BFS and bran
h
ounthave 
overed all bran
hes by the se
ond printing, DFSdoes not do so until the fourth printing. The behaviorof the bran
h
ount heuristi
 
an be seen as a mixture ofthe behaviors of BFS and DFS that is sensitive to thebran
hing stru
ture of the program.In addition to avoiding lo
al minima, this heuristi
has the advantage of being more sensitive to data valuesthan the 
overage measures traditionally used in test-ing. Be
ause the heuristi
 
ounts the exe
utions of ea
hbran
h, it is in
uen
ed by data values that determinehow many times a for-loop is exe
uted in a manner be-yond the simple 0-1 sensitivity of all-or-nothing 
overage.4.1.1 Variations on the Bran
h Counting Heuristi
.A number of options 
an modify the basi
 strategy:{ Counts may be taken globally (over the entire statespa
e explored) or only for the path by whi
h a par-ti
ular state is rea
hed. This allows us to examineeither 
ombinations of 
hoi
es along ea
h path orto try to maximize bran
h 
hoi
es over the entiresear
h when the ordering along paths is less rele-vant. In prin
iple, the path-based approa
h shouldbe useful when taking 
ertain bran
hes in a parti
-ular 
ombination in an exe
ution is responsible forerrors. Global 
ounts will be more useful when sim-ply exer
ising all of the bran
hes is a better way to�nd an error. An instan
e of the latter would be aprogram in whi
h one large nondeterministi
 
hoi
eat the beginning results in di�erent 
lasses of shallowexe
utions, one of whi
h leads to an error state.{ The bran
h 
ount may be allowed to persist|if astate is rea
hed without 
overing any bran
hes, thelast bran
h 
ount on the path by whi
h that state wasrea
hed may be used instead of giving the state these
ond best heuristi
 value. This allows us to in
reasethe tenden
y to explore paths that have improved
overage without being quite as prone to falling intolo
al minima as the %-
overage heuristi
.{ The 
ounts over a path 
an be summed to redu
e thesear
h's sensitivity to individual bran
h 
hoi
es.{ These various methods 
an also be applied to 
ountstaken on exe
utions of ea
h individual byte
ode in-stru
tion, rather than only of bran
hes. This is equiv-alent to the idea of statement 
overage in traditionaltesting.The pra
ti
al e�e
t of this 
lass of heuristi
 is to in-
rease exploration of portions of the state spa
e in whi
hnondeterministi
 
hoi
es or thread interleavings have re-sulted in the possibility of previously unexplored or less-explored bran
hes being taken.In pra
ti
e, these variations behaved very mu
h likethe basi
 bran
h 
ounting heuristi
 in our experimental
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king Java Programs 7results. For persistent and summing 
ounts, in fa
t, theresults were identi
al to the standard sear
h in almostall 
ases, and were thus omitted from the experimentalresults. In theory, all of the variations 
an produ
e signif-i
antly di�erent results on real programs, but in pra
ti
eonly global vs. path had any observable impa
t.Note also that the bran
h 
ounting heuristi
s 
anbe used in dynami
 test 
ase generation [39℄ by usingthe heuristi
 fun
tion to optimize the sele
tion of test
ases|for example, by only pi
king 
ases in whi
h the
overage in
reases.4.1.2 Experimental ResultsWe will refer to a number of heuristi
s (Table 2) andsear
h strategies (Table 3) when presenting experimentalresults. In addition to these basi
 heuristi
s, we indi
atewhether a heuristi
 is measured over paths or all statesby appending (path) or (global) when that is an option.The DEOS real-time operating system developed byHoneywell enables Integrated Modular Avioni
s (IMA)and is 
urrently used within 
ertain small business air-
raft to s
hedule time-
riti
al software tasks. During itsdevelopment a routine 
ode inspe
tion led to the un
ov-ering of a subtle error in the time-partitioning that 
ouldallow tasks to be starved of CPU time - a sequen
e ofunanti
ipated API 
alls made near time-period bound-aries would trigger the error. Interestingly, although avion-i
s software needs to be tested to a very high degree(100% MC/DC 
overage) to be 
erti�ed for 
ight, thiserror was not un
overed during testing. Model 
he
kingwas used to redis
over this error, by using a translationto PROMELA (the input language of the SPIN model
he
ker) [44℄. Later a Java translation of the originalC++ 
ode was used to dete
t the error. Both versionsuse an abstra
tion to �nd the error (see the dis
ussionin se
tion 4.4). The results (Table 4) are from a versionof the Java 
ode that does not abstra
t away an in�nite-state 
ounter|a more straightforward translation of theoriginal C++ 
ode into Java.The %-
overage heuristi
 does indeed appear to eas-ily be
ome trapped in lo
al minima, and, as it is notadmissible, using an A� sear
h will not ne
essarily help.For 
omparison to results not using heuristi
s, here andbelow we also give results for breadth-�rst sear
h (BFS),depth-�rst sear
h (DFS) and depth-�rst sear
hes lim-ited to a 
ertain maximum depth. For essentially in�nitestate systems (su
h as this version of DEOS), limitingthe depth is the only pra
ti
al way to use DFS, but as
an be seen, �nding the proper depth 
an be diÆ
ult|and large depths may result in extremely long 
ounterex-amples. Using a purely random heuristi
 does, in fa
t,�nd a 
ounterexample for DEOS|however, the 
oun-terexample is 
onsiderably longer and takes more timeand memory to produ
e than with the 
overage heuris-ti
s.

We also applied the su

essful heuristi
s to the DEOSsystem with the storing of visited states turned o� (per-forming testing or simulation rather than model 
he
k-ing, essentially). Without state storage, these heuris-ti
s failed to �nd a 
ounterexample before exhaustingmemory|the queue of states to explore be
omes toolarge and exhausts the memory.4.2 Thread Interleaving Heuristi
sA di�erent kind of stru
tural heuristi
 is based on max-imizing thread interleavings. Testing, in whi
h generallythe s
heduler 
annot be 
ontrolled dire
tly, often missessubtle ra
e 
onditions or deadlo
ks be
ause they rely onunlikely thread s
heduling. One way to expose 
on
ur-ren
y errors is to reward \demoni
" s
heduling by as-signing better heuristi
 values to states rea
hed by pathsinvolving more swit
hing of threads. In this 
ase, thestru
ture we attempt to explore is the dependen
y ofthe threads on pre
ise ordering. If a non-lo
ked variableis a

essed in a thread, for instan
e, and another thread
an also a

ess that variable (leading to a ra
e 
ondi-tion that 
an result in a deadlo
k or assertion violation),that path will be preferred to one in whi
h the a

essingthread 
ontinues onwards, perhaps es
aping the e�e
tsof the ra
e 
ondition by reading the just-altered value.This heuristi
 is 
al
ulated by keeping a (possibly lim-ited in size) history of the threads s
heduled on ea
hpath:{ At ea
h step of exe
ution append the thread just ex-e
uted to a thread history.{ Pass through this history, making the heuristi
 valuethat will be returned worse ea
h time the thread justexe
uted appears in the history by a value propor-tional to:1. how far ba
k in the history that exe
ution is and2. the 
urrent number of live threadsFigure 4 presents a small sample program and Table5 shows how the interleaving heuristi
 a�e
ts the orderof exploration of its state spa
e by the model 
he
ker. Aswith bran
h 
ounting, DFS is immediately distinguish-able from the other heuristi
s, as the model 
he
ker ex-e
utes Thread #1 until this is no longer possible (afterwhi
h we observe ba
ktra
king behavior). BFS and theinterleaving heuristi
 both behave very similarly at �rst;as with the bran
h 
ounting heuristi
, the basi
 approa
his to imitate a breadth-�rst exploration until informationis available to modify this behavior. Figure 5 shows thebeginning of the possible interleavings of the print state-ments for the 
ode. There are only two possible printstatements at the earliest depth at whi
h a print state-ment 
an be en
ountered. States with the same heuristi
value are ordered by the 
reation order of the threads. Atthe se
ond depth at whi
h print statements 
an be en-
ountered, there are four 
hoi
es, but the thread history
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e, Willem Visser: Heuristi
s for Model Che
king Java ProgramsHeuristi
 De�nitionbran
h
ount The basi
 bran
h 
ounting heuristi
. Has multiple variations, su
h as pathor global 
overage.byte
ode Computed in the same manner as the bran
h
ount heuristi
, but applied toall byte
ode instru
tions; also 
omes in path and global variations.%-
overage Measures the per
entage of bran
hes 
overed. States with higher 
overagere
eive better values.most-blo
ked Measures the number of blo
ked threads. More blo
ked threads resultsin better values.interleaving Measures the amount of interleaving of threads on paths. See Se
tion 4.2.prefer-threads Uses heuristi
 value to prefer exe
ution of a given set of threads.
hoose-free Uses heuristi
 value to avoid abstra
tion-introdu
ed nondeterminism.random Uses a randomly assigned heuristi
 value. Results shown are best of a seriesof runs. Table 2. Heuristi
s.Sear
h strategy De�nitionBFS A breadth-�rst sear
h.DFS A depth-�rst sear
h. (depth n) indi
ates that sta
k depth is limited to n.best Best-�rst sear
h, (with possible queue limit k)A� An A� sear
h (with possible queue limit k)beam Beam sear
h (with a given k)Table 3. Sear
h strategies.Sear
h Heuristi
 Time(s) Mem(MB) States Length Max Depthbest bran
h
ount (path) 60 92 2,701 136 139A� bran
h
ount (path) 59 90 2,712 136 139best bran
h
ount (global) 60 91 2,701 136 139A� bran
h
ount (global) 59 92 2,712 136 139best byte
ode (path) - FAILS 9,032 - 168A� byte
ode (path) - FAILS 10,073 - 139best byte
ode (global) 62 88 2,195 136 137A� byte
ode (global) 63 94 2,383 136 137best %-
overage (path) - FAILS 20,215 - 334A� %-
overage (path) - FAILS 18,141 - 134best %-
overage (global) - FAILS 20,213 - 334best random 162 240 8,057 334 360BFS - - FAILS 18,054 - 135DFS - - FAILS 14,678 - 14,678DFS (depth 500) - 6,782 383 392,479 455 500DFS (depth 1000) - 2,222 196 146,949 987 1,000DFS (depth 4000) - 171 270 8,481 3,997 4,000Results with state storage turned o�best bran
h
ount (path) - FAILS 15,964 - 125A� bran
h
ount (path) - FAILS 15,962 - 125best bran
h
ount (global) - FAILS 15,964 - 125A� bran
h
ount (global) - FAILS 15,962 - 125Table 4. Experimental results for the DEOS system.All results obtained on a 1.4 GHz Athlon with JPF limited to 512Mb. Time(s) is in se
onds and Mem(MB) is inmegabytes. FAILS indi
ates failure due to running out of memory. The Length 
olumn reports the length of the
ounterexample (if one is found). The Max Depth 
olumn reports the length of the longest path explored (the maximumsta
k depth in the depth-�rst 
ase).
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lass MyThread extends Thread fpubli
 stati
 int s = 0;private int tid;MyThread (int i) ftid = i;gpubli
 void run()fSystem.out.println ("Thread #" + tid + ", A");System.out.println ("Thread #" + tid + ", B");System.out.println ("Thread #" + tid + ", C");gg
lass IntExample fpubli
 stati
 void main (String [℄ args) fVerify.beginAtomi
 ();MyThread Thread1 = new MyThread(1);MyThread Thread2 = new MyThread(2);Thread1.start (); Thread2.start ();Verify.endAtomi
 ();gg Fig. 4. Example program for interleaving heuristi
.
1B 2B 1A 2C

1A 2B

2A

1C 2A 1B 2B

1B 2A

1ADepth 1

Depth 2

Depth 3

Depth 4... .            .            .Fig. 5. Thread interleaving for 
ode in Figure 4.is too small to a
tivate the interleaving heuristi
. It is atthe third depth (indi
ated by the line in Table 5) thatwe see divergen
e between the BFS and the interleavingheuristi
. 1C, the �rst print statement at this depth inthe BFS, results from a very non-interleaved exe
utionsequen
e in whi
h thread #1 is 
hosen three times in arow. 1B, the interleaving 
hoi
e, results from exe
utingthread #1, then thread #2, then thread #1 again. 2A,the next BFS 
hoi
e, must result from a path whi
h be-gins by exe
uting thread #1 twi
e in a row, while theinterleaving heuristi
 
auses 2B to appear �rst, as it 
anbe rea
hed by exe
uting thread #2, then thread #1, andthen thread #2 again. After this, the exe
ution ordersgrow more divergent as more thread history is a

umu-lated. The interleaving heuristi
 not only rearranges theorder within a parti
ular depth, it abandons breadth �rstsear
h 
ompletely. A 2A exe
ution from depth 4 appearsbefore the 1A exe
ution for depth 3.4.2.1 Experimental ResultsDuring May 1999 the Deep-Spa
e 1 spa
e
raft ran a setof experiments whereby the spa
e
raft was under the
ontrol of an AI-based system 
alled the Remote Agent.

DFS BFS interleavingThread #1, A Thread #1, A Thread #1, AThread #1, B Thread #2, A Thread #2, AThread #1, C Thread #1, B Thread #1, BThread #2, A Thread #2, A Thread #2, AThread #2, B Thread #1, A Thread #1, AThread #2, C Thread #2, B Thread #2, BThread #2, A Thread #1, C Thread #1, BThread #1, C Thread #2, A Thread #2, BThread #2, B Thread #1, B Thread #1, BThread #1, C Thread #2, B Thread #2, BThread #2, C Thread #1, B Thread #1, CThread #1, C Thread #2, B Thread #2, AThread #2, A Thread #1, A Thread #2, AThread #1, B Thread #2, C Thread #2, BThread #2, B Thread #2, A Thread #2, CThread #1, B Thread #1, C Thread #1, AThread #2, C Thread #2, B Thread #2, CThread #1, B Thread #1, B Thread #1, AThread #2, A Thread #2, C Thread #1, BThread #1, A Thread #1, C Thread #1, CThread #1, B Thread #2, B Thread #1, CThread #1, C Thread #1, B Thread #2, BThread #2, B Thread #2, C Thread #1, BThread #2, C Thread #1, A Thread #2, CThread #2, B Thread #2, B Thread #1, BThread #1, C Thread #1, C Thread #2, CThread #2, C Thread #2, C Thread #1, BThread #1, C Thread #1, B Thread #1, CThread #2, B Thread #2, B Thread #1, CThread #1, B Thread #1, C Thread #2, BThread #2, C Thread #2, C Thread #2, BThread #1, B Thread #1, B Thread #2, CThread #2, B Thread #2, C Thread #1, CThread #1, A Thread #1, C Thread #2, CThread #2, C Thread #2, C Thread #1, CThread #1, A Thread #1, C Thread #2, CTable 5. Order of exploration for 
ode in Figure 4.Unfortunately, during one of these experiments the soft-ware went into a deadlo
k state, and had to be restartedfrom Earth. The 
ause of the error at the time was un-known, but after some study, in whi
h the most likely
omponents to have 
aused the error were identi�ed, theerror was found by applying model 
he
king to a Javaversion of the 
ode|the error was due to a missing 
riti-
al se
tion 
ausing a ra
e violation to o

ur under 
ertainthread interleavings introdu
ing a deadlo
k [30℄. The re-sults (Table 6) use a version of the 
ode that is faithfulto the original system, as it also in
ludes parts of thesystem not involved in the deadlo
k.Experiments indi
ate that whileA� and beam-sear
h
an 
ertainly perform well at times, they generally do notperform as well as best-�rst sear
h. The heuristi
s inves-tigated are not admissible, so the optimality advantagesof A� do not 
ome into play. In general, both appearto require more judi
ious 
hoi
e of queue-limits than isne
essary with best-�rst sear
h, at least in this example.
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s for Model Che
king Java ProgramsSear
h Heuristi
 Time(s) Mem(MB) States Length Max Depthbest (k = 40) bran
h
ount (path) - FAILS 1,765,009 - 12,092best (k = 160) bran
h
ount (path) - FAILS 1,506,725 - 5,885best (k = 1000) bran
h
ount (path) 132 290 845,263 136 136best (k = 40) bran
h
ount (global) - FAILS 1,758,416 - 12,077best (k = 160) bran
h
ount (global) - FAILS 1,483,827 - 1,409best (k = 1000) bran
h
ount (global) - FAILS 1,509,810 - 327best random - FAILS 55,940 - 472BFS - - FAILS 623,566 - 60DFS - - FAILS 267,357 - 267,357DFS (depth 500) - 43 54 116,071 500 500DFS (depth 1000) - 44 64 117,235 1000 1000DFS (depth 4000) - 47 72 122,513 4000 4000best interleaving - FAILS 378,068 - 81best (k = 5) interleaving 15 17 38,449 913 913best (k = 40) interleaving 116 184 431,752 869 869best (k = 160) interleaving 908 501 1,287,984 869 870best (k = 1000) interleaving - FAILS 745,788 - 177A� interleaving - FAILS 369,166 - 81A� (k = 5) interleaving 13 19 43,172 912 912A� (k = 40) interleaving 77 129 306,285 865 867A� (k = 160) interleaving - FAILS 1,309,561 - 789A� (k = 1000) interleaving - FAILS 1,836,675 - 273beam (k = 5) interleaving 14 16 35,514 927 927beam (k = 40) interleaving 91 113 238,945 924 924beam (k = 160) interleaving 386 418 1,025,595 898 898beam (k = 1000) interleaving - FAILS 1,604,940 - 365best most-blo
ked 7 33 7,537 158 169best (k = 5) most-blo
ked - FAILS 922,433 - 27,628best (k = 40) most-blo
ked - FAILS 913,946 - 4,923best (k = 160) most-blo
ked - FAILS 918,575 - 1,177best (k = 1000) most-blo
ked 6 10 7,537 158 169A� most-blo
ked - FAILS 631,274 - 61A� (k = 5) most-blo
ked - FAILS 935,796 - 16,189A� (k = 40) most-blo
ked - FAILS 960,259 - 1,907A� (k = 160) most-blo
ked - FAILS 989,513 - 555A� (k = 1000) most-blo
ked - FAILS 1,138,920 - 165best prefer-threads - FAILS 548,157 - 61best (k = 5) prefer-threads 3 3 3,632 121 121best (k = 40) prefer-threads 6 12 23,754 121 121best (k = 160) prefer-threads 16 39 81,162 121 121best (k = 1000) prefer-threads 80 201 450,035 121 121Table 6. Experimental results for the Remote Agent system.Finally, for the dining philosophers (Table 7), weshow that the interleaving heuristi
 
an s
ale to quitelarge numbers of threads. While DFS fails to un
over
ounterexamples even for small problem sizes, the inter-leaving heuristi
 
an produ
e short 
ounterexamples forup to 64 threads. The most-blo
ked heuristi
, designedto dete
t deadlo
ks, generally returns larger 
ounterex-amples (in the 
ase of size 8 and queue limit 5, larger by afa
tor of over a thousand) after a longer time than the in-terleaving heuristi
. Even more importantly, it does nots
ale well to larger numbers of threads. We only report,for ea
h number of philosopher threads, the results forthose sear
hes that were su

essful in the next smallerversion of the problem. Results not shown indi
ate that,

in fa
t, failed sear
hes do not tend to su

eed for largersizes.The key di�eren
e in approa
h between using a property-spe
i�
 heuristi
 and a stru
tural heuristi
 
an be seenin the dining philosophers example where we sear
h forthe well-known deadlo
k s
enario. When in
reasing thenumber of philosophers high enough (for example to 16)it be
omes impossible for an expli
it-state model 
he
kerto try all the possible 
ombinations of a
tions to getto the deadlo
k and heuristi
s (or lu
k) are required. Aproperty-spe
i�
 heuristi
 appli
able here is to try andmaximize the number of blo
ked threads (most-blo
kedheuristi
 from Table 2), sin
e if all threads are blo
kedwe have a deadlo
k in a Java program. Whereas a stru
-
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h Heuristi
 Size Time(s) Mem(MB) States Length Max Depthbest bran
h
ount (path) 8 - FAILS 374,152 - 41best random 8 - FAILS 218,500 - 86BFS - 8 - FAILS 436,068 - 13DFS - 8 - FAILS 398,906 - 384,286DFS (depth 100) - 8 - FAILS 1,357,596 - 100DFS (depth 500) - 8 - FAILS 1,354,747 - 500DFS (depth 1000) - 8 - FAILS 1,345,289 - 1,000DFS (depth 4000) - 8 - FAILS 1,348,398 - 4,000best most-blo
ked 8 - FAILS 310,317 - 285best (k = 5) most-blo
ked 8 17,259 378 891,177 78,353 78,353best (k = 40) most-blo
ked 8 10 7 13,767 273 273best (k = 160) most-blo
ked 8 10 12 25,023 172 172best (k = 1000) most-blo
ked 8 46 59 123,640 254 278best interleaving 8 - FAILS 487,942 - 16best (k = 5) interleaving 8 2 1 1,719 66 66best (k = 40) interleaving 8 5 5 16,569 66 66best (k = 160) interleaving 8 12 27 62,616 66 66best (k = 1000) interleaving 8 60 137 354,552 67 67best (k = 5) most-blo
ked 16 - FAILS 802,526 - 36,443best (k = 40) most-blo
ked 16 38 69 101,576 1,008 1,008best (k = 160) most-blo
ked 16 - FAILS 799,453 - 2,071best (k = 1000) most-blo
ked 16 - FAILS 791,073 - 702best (k = 5) interleaving 16 4 5 6,703 129 129best (k = 40) interleaving 16 16 45 69,987 131 131best (k = 160) interleaving 16 60 207 290,637 131 132best (k = 1000) interleaving 16 - FAILS 858,818 - 41best (k = 40) most-blo
ked 32 - FAILS 463,414 - 2,251best (k = 5) interleaving 32 11 32 25,344 257 257best (k = 40) interleaving 32 - FAILS 472,022 - 775best (k = 160) interleaving 32 - FAILS 494,043 - 86best (k = 5) interleaving 64 59 206 101,196 514 514Table 7. Experimental results for dining philosophers.tural heuristi
 may be to observe that we are dealinghere with a highly 
on
urrent program|hen
e it maybe argued that any error in it may well be related to anunexpe
ted interleaving|hen
e we use the heuristi
 tofavor in
reased interleaving during the sear
h (interleav-ing heuristi
 from Table 2). Although the results are byno means 
on
lusive, it is still worth noting that for thisspe
i�
 example the stru
tural heuristi
 performs mu
hbetter than the property-spe
i�
 heuristi
.For the dining philosophers and Remote Agent ex-ample we also performed the experiment of turning o�state storage. For the interleaving heuristi
, results wereessentially un
hanged (minor variations in the length of
ounterexamples and number of states sear
hed). We be-lieve that this is be
ause to return to a previously visitedstate in ea
h 
ase requires an a
tion sequen
e that willnot be given a good heuristi
 value by the interleavingheuristi
 (for example in the dining philosophers, alter-nating pi
king up and dropping of forks by the samethreads). For the most-blo
ked heuristi
, however, su
-
essful sear
hes be
ome unsu

essful|removal of statestorage introdu
es the possibility of non-termination intothe sear
h. For example, the most-blo
ked heuristi
 with-

out state storage may not even terminate, in some 
ases(imagine a s
enario in whi
h deadlo
k is impossible buta 
ertain thread 
an a
quire a lo
k, blo
king all otherthreads|it is then for
ed to release the lo
k as the onlythread that 
an exe
ute, but the heuristi
 will then 
auseit to a
quire the lo
k again, returning to the previousstate).
Godefroid and Khurshid apply their geneti
 algo-rithm te
hniques to a very similar implementation of thedining philosophers (written in C rather than Java) [25℄.They seed their geneti
 sear
h randomly on a versionwith 17 running threads, reporting a 50% su

ess rateand average sear
h time of 177 se
onds (on a slower ma-
hine than we used). The results suggest that the dif-feren
es may be as mu
h a result of the heuristi
s used(something like most-blo
ked vs. the interleaving heuris-ti
) as the geneti
 sear
h itself. Appli
ation of stru
turalheuristi
s in di�erent sear
h frameworks is an interestingavenue for future study.
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e, Willem Visser: Heuristi
s for Model Che
king Java Programs4.3 The Thread Preferen
e Heuristi
The interleaving heuristi
 rewards 
ontext-swit
hing; if aprogram has a large number of threads that are enabled,in an interleaving-guided sear
h those threads will all beexe
uted often. However, a few threads in a programmaybe suspe
ted to harbor an error. Instead of rewarding
ontext-swit
hing (or trying to blo
k threads that maybe unrelated to the error), we 
an improve the heuristi
value of transitions that involve exe
ution of only thesethreads.The Remote Agent example in
ludes a s
alable num-ber of threads that are not involved in the a
tual er-ror. If the size of this irrelevant part of the state spa
eis in
reased, the various sear
hes listed above performmu
h more poorly, and in many 
ases 
annot �nd theerror. The existen
e of the prefer-threads heuristi
 al-lows a new approa
h to hunting 
on
urren
y errors inJPF. JPF in
orporates a version of the Eraser ra
e de-te
tion algorithm [49℄. First, the model 
he
ker is runin ra
e dete
tion mode with a small queue limit (300worked well) and some heuristi
 (a BFS suÆ
ed in ourexperiments). This sear
h does not �nd the error, butreports a number of potential ra
e 
onditions. Allowingthe ra
e dete
tion to run for 3 minutes (using 389MB ofmemory) reveals that the Exe
utive and Planner threadshave unprote
ted write a

esses to a �eld. The threadsinvolved in the potential ra
e 
onditions are then used toguide a thread-preferen
e sear
h with a similarly smallqueue, and a 
ounterexample is qui
kly dete
ted. Thisapproa
h s
aled to larger versions of the Remote Agentthan other heuristi
s 
ould handle (Table 8). The �rstblo
k of results are for a version in whi
h the irrelevantportion of the state spa
e is doubled with respe
t to theversion in Table 6, and the size is again doubled in ea
hblo
k (with only the sear
hes su

eeding for the last sizeshown).This is a di�erent 
avor of stru
tural heuristi
 thanthose presented previously. The bran
h 
ounting and in-terleaving heuristi
s are not only not property-spe
i�
,but do not rely on spe
i�
 knowledge of the program'sbehavior beyond what 
an be observed by the model
he
ker (whi
h bran
hes are taken, whi
h threads are en-abled) during exe
ution of the program. Preferring 
er-tain threads assumes knowledge about the behavior ofthe program; while it is not a property-spe
i�
 heuristi
,it fo
uses on a part of the system's stru
ture guided byknowledge of what parts of the system are \interesting."However, our strategy with the Remote Agent demon-strates that this knowledge itself may be automati
allyextra
table by the model 
he
ker. The experimental re-sults show that su
h additional knowledge 
an, as wouldbe expe
ted, aid a guided sear
h 
onsiderably.

4.4 The Choose-free Heuristi
Abstra
tion based on over-approximations of the sys-tem behavior is a popular te
hnique for redu
ing thesize of the state spa
e of a system to allow more eÆ
ientmodel 
he
king [8,12,26,53℄. JPF supports two formsof over-approximation: predi
ate abstra
tion [53℄ andtype-based abstra
tions (via the BANDERA tool) [12℄.However, over-approximation is not well suited for error-dete
tion, sin
e the additional behaviors introdu
ed bythe abstra
tion 
an lead to spurious errors that are notpresent in the original. Eliminating spurious errors is ana
tive area of resear
h within the model 
he
king 
om-munity [3,7,31,43,48℄.JPF uses a novel te
hnique for the elimination ofspurious errors 
alled 
hoose-free sear
h [43℄. This te
h-nique is based on the fa
t that all over-approximationsintrodu
e nondeterministi
 
hoi
es in the abstra
t pro-gram that were not present in the original. Therefore,a 
hoose-free sear
h �rst sear
hes the part of the statespa
e that doesn't 
ontain any nondeterministi
 
hoi
esdue to abstra
tion. If an error is found in this so-
alled
hoose-free portion of the state spa
e then it is also an er-ror in the original program. Although this te
hnique mayseem almost naive, it has been shown to work remark-ably well in pra
ti
e [12,43℄. The �rst implementation ofthis te
hnique was by only sear
hing the 
hoose-free statespa
e, but the 
urrent implementation uses a heuristi
that gives the best heuristi
 values to the states withthe fewest nondeterministi
 
hoi
e statements enabled,i.e. allowing the 
hoose-free state spa
e to be sear
hed�rst but 
ontinuing to the rest of the state spa
e oth-erwise (this also allows 
hoose-free to be 
ombined withother heuristi
s).The DEOS example 
an be abstra
ted by using bothpredi
ate abstra
tion [53℄ and type-based abstra
tion [12℄.The predi
ate abstra
tion of DEOS is a pre
ise abstra
-tion, i.e. it does not introdu
e any new behaviors notpresent in the original, hen
e we fo
us here on the type-based abstra
tion|spe
i�
ally we use a Range abstra
-tion (allowing the values 0 and 1 to be 
on
rete and allvalues 2 and above to be represented by one abstra
tvalue) to the appropriate variable [12℄. When using the
hoose-free heuristi
 it is dis
overed that for this Rangeabstra
tion the heuristi
 sear
h reports a 
hoose-free er-ror of length 26 in 20 se
onds. The error path is shorterthan in the experimental results reported earlier be
ausethose results are for a version of DEOS in whi
h time isnot abstra
ted (and thus arithmeti
 is not redu
ed tooperations on the range-abstra
ted values).These heuristi
s for �nding feasible 
ounterexamplesduring abstra
tion 
an be seen as an on-the-
y under-approximation of an over-approximation (from the ab-stra
tion) of the system behavior. The only other heuris-ti
 that we are aware of that falls into a similar 
ategoryis the one for redu
ing infeasible exe
ution sequen
esin the FLAVERS tool [10℄. This heuristi
 di�ers from
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h Heuristi
 Time(s) Mem(MB) States Length Max DepthSize = 10 (Table 6 is Size = 5 results)best (k = 1000) bran
h
ount (path) - FAILS 1,193,730 - 230DFS (depth 500) - - FAILS 599,431 - 500DFS (depth 1000) - - FAILS 598,487 - 1000DFS (depth 4000) - - FAILS 590,259 - 4000best (k = 5) interleaving 116 161 243,910 2,870 2,870best (k = 40) interleaving - FAILS 908,353 - 1,755best (k = 160) interleaving - FAILS 1,146,152 - 809A� (k = 5) interleaving 112 158 241,999 2,867 2,867A� (k = 40) interleaving - FAILS 892,071 - 1,764beam (k = 5) interleaving 116 151 209,370 2,888 2,888beam (k = 40) interleaving - FAILS 875,752 - 1,927beam (k = 160) interleaving - FAILS 1,066,711 - 902best most-blo
ked 25 186 23,528 269 280best (k = 1000) most-blo
ked 15 31 24,528 269 280best (k = 5) prefer-threads 4 8 11,137 201 201best (k = 40) prefer-threads 16 49 79,354 201 201best (k = 160) prefer-threads 51 169 290,932 201 201best (k = 1000) prefer-threads - FAILS 995,617 - 149Size = 20best (k = 5) interleaving - FAILS 639,748 - 5,321A� (k = 5) interleaving - FAILS 635,067 - 5,031beam (k = 5) interleaving - FAILS 611,495 - 5,797best most-blo
ked - FAILS 41,991 - 497best (k = 1000) most-blo
ked - FAILS 402,007 - 524best (k = 5) prefer-threads 9 38 38,147 361 361best (k = 40) prefer-threads 55 272 286,554 361 361best (k = 160) prefer-threads - FAILS 680,990 - 279Size = 40best (k = 5) prefer-threads 38 212 140,167 681 681best (k = 40) prefer-threads - FAILS 472,708 - 445Table 8. Larger versions of the Remote Agent.those dis
ussed previously in that it relies on the stru
-ture of the abstra
tion applied to a program rather thanon the bran
hing or thread-intera
tion stru
ture of theprogram.5 User-Guided Sear
hes5.1 User-De�ned Heuristi
sTraditionally, heuristi
s are often very problem-spe
i�
.Previous dis
ussion throughout this paper has been ofheuristi
s of general utility, but JPF allows for very spe-
i�
 heuristi
s as well. Users may write their own heuris-ti
s in Java. Consider a program with a 
lass Main with astati
 �eld buffer, itself an obje
t of a 
lass with integer�elds 
urrent and 
apa
ity. Figure 6 shows the 
odefor a heuristi
 returning either (
apa
ity � 
urrent),or a default value (de�ned in the UserHeuristi
 
lass) ifthe Main.buffer �eld hasn't been initialized:Stru
tural heuristi
s and property-spe
i�
 heuristi
sof very general utility (su
h as the most-blo
ked heuris-ti
) are provided as built-in features of the model 
he
ker,

publi
 int heuristi
Value() fReferen
e m =getSystemState().getClass("Main");if (m != null) fReferen
e b =m.getObje
tField("buffer");if (b != null) fint 
urrent =b.getIntField("
urrent");int 
apa
ity =b.getIntField("
apa
ity");if (
urrent > 
apa
ity)return 0;return (
apa
ity-
urrent);ggreturn defaultValue;g Fig. 6. Example of a user-de�ned heuristi
.but the range of property-spe
i�
 (or experimental stru
-tural heuristi
s) is so large that it is essential to allowusers to also 
raft their own heuristi
s.
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e, Willem Visser: Heuristi
s for Model Che
king Java ProgramsMethodVerify.interesting (boolean b)If b evaluates to true:heuristi
 value for state in whi
h the 
all appears is equalto the best possible heuristi
 value.Verify.boring (boolean b)If b evaluates to true:heuristi
 value for state in whi
h the 
all appears is onestep worse than the worst heuristi
 value previously
omputed in the model 
he
king run.Verify.ignoreIf (boolean b)If b evaluates to true:the state in whi
h the 
all appears is not explored by themodel 
he
ker. This applies even to non-heuristi
 sear
hes.Note that this potentially introdu
es an in
ompletenessinto the sear
h and 
an be dangerous if used unwisely.Table 9. Spe
ial methods for program guided sear
h.publi
 stati
 void main (String [℄ args) fint x = Verify.random(10);int y = 0;Verify.interesting (x > 5);Verify.boring (x < 5);if (x > 5)y = 100;if (x < 5)y = 50;System.out.println ("y = " + y);g Fig. 7. Example program for program guided sear
h.Calls Ordernone 50, 100, 50, 100, 50, 100, 50, 100, 50, 100, 0both 100, 50, 100, 100, 100, 100, 0, 50, 50, 50, 50Table 10. Sear
h ordering for example in Figure 7.5.2 Program-Guided Sear
hAmore lightweight approa
h than introdu
ing new heuris-ti
s into the model 
he
ker itself is to introdu
e 
alls thatare trapped by the model 
he
ker and used to modify thebehavior of whatever heuristi
 is being used. JPF pro-vides three methods for this purpose (Table 9).These methods 
an be used to �ne tune the behaviorof the various heuristi
s provided by JPF in a dynami
fashion, based on values 
omputed by the program beingmodel 
he
ked at run time. The heuristi
 alteration fromVerify.interesting and Verify.boring only appliesto one state, but may have a signi�
ant e�e
t on thesear
h nonetheless. For example, if the bran
h 
ountingheuristi
 is used and the su

essor to the interesting state
overs a new bran
h, it (and possibly its su

essors) willbe explored before the other states that would otherwisehave had the same value as the interesting state.

As an example, 
onsider the program in Figure 7.Model 
he
king the program using the bran
h 
ount-ing heuristi
 alone 
auses the model 
he
ker to alternatebetween exe
utions outputting 50 and 100 be
ause thiskeeps the 
ounts on the bran
hes even. Introdu
ing 
allsto Verify.interesting and Verify.boring 
auses the�rst value printed to be 100, as the su

essors to the\boring" states are pla
ed later in the queue. A single50 then appears, as the bran
h 
ounting heuristi
's Rule1 for
es the �rst 
overage of a bran
h to always have thebest heuristi
 value. The other 
hoi
es in whi
h (x < 5)are all delayed until after the neutral (x == 5) 
ase.Verify.ignoreIf 
an be used as a more pre
ise toolfor limiting the sear
h queue, or in a non-heuristi
 fash-ion to prune parts of the state spa
e in whi
h it 
anbe shown (via stati
 analysis or manual inspe
tion) thaterrors 
annot o

ur. The latter approa
h is used to ter-minate exploration of infeasible paths when using JPFfor symboli
 exe
ution [38℄. Use of Verify.ignoreIf re-quires 
onsiderable 
aution, as it 
an result in the model
he
ker returning \true" for properties that do not hold.It is analogous to the assume dire
tive available in manyother model 
he
kers.6 Related WorkA wide body of work now exists on the topi
 of model
he
king software in real programming languages [3,6,11,24,31,34,35,41,52℄. Te
hniques range from predi
ateabstra
tion based approa
hes [3,6,31℄ to more dire
t ex-plorations of exe
uting 
ode without a separate model [24,41,52℄.Early work in heuristi
 model 
he
king applied best-�rst sear
h to model 
he
king for proto
ol validation toa
hieve signi�
ant gains over depth-�rst sear
h [40℄. Pa-geot and Jard [42℄ dis
ussed using heuristi
s to guidememory-less sear
h (also known as guided simulation orrandom walk), and Holzmann noted that this 
ould alsobe applied to a (potentially) partial sear
h as in expli
it-state model 
he
king [32℄. Edelkamp, Lafuente, and Leueintrodu
ed heuristi
 sear
h into the SPIN expli
it-statemodel 
he
ker [14℄, suggested a use of heuristi
 model
he
king to redu
e the size of 
ounterexamples [16℄, andapplied the partial-order redu
tion to heuristi
 sear
h [15,13℄. This work provides a useful 
ontrast to this paper,in that it 
on
entrates on property and goal-dire
tedheuristi
s that are sometimes admissible.We �rst applied heuristi
 model 
he
king to Java pro-grams [27℄ and introdu
ed a new 
lass of heuristi
s forsoftware model 
he
king [28℄. Our previous work andthis paper 
on
entrate on stru
tural heuristi
s over themore studied property and goal-state dire
ted heuristi
s.Edelkamp and Mehler examined the use of JPF's heuris-ti
 framework with goal-dire
ted heuristi
s, and provideuseful 
ommentary on and 
omparisons with our stru
-tural approa
h [17℄. Godefroid and Khurshid applied ge-



Alex Gro
e, Willem Visser: Heuristi
s for Model Che
king Java Programs 15neti
 algorithm te
hniques rather than the more basi
heuristi
 sear
hes, using heuristi
s measuring outgoingtransitions from a state (similar to the most-blo
kedheuristi
|see Table 2), rewarding evaluations of asser-tions, and measuring messages ex
hanged in a se
urityproto
ol [25℄. Musuvathi et al. brie
y mention some su
-
ess in using heuristi
s to guide a dire
t exploration ofC and C++ 
ode (in a manner similar to that in whi
hJPF explores Java 
ode) [41℄.Yang and Dill used a best-�rst sear
h with BDD-based model 
he
king within the Mur� tool [54℄. Bloem,Ravi and Somenzi used heuristi
s to redu
e the bottle-ne
ks of image 
omputation in symboli
 model 
he
k-ing [5℄. OBDD-based heuristi
 sear
h has also been usedin AI planning problems 
losely related to model 
he
k-ing. Edelkamp and Re�el [18℄ originally proposed anOBDD-based version of the A� algorithm. Jensen, Bryantand Veloso have developed a signi�
antly improved BDD-based version of A� [37,36℄.Heuristi
s have also been used for generating test
ases [45,51℄, and model 
he
kers have been used fortest 
ase generation [1,2,19,20,23,46℄. Friedman et. al.used a Coverage First Sear
h (CFS) related to stru
turalheuristi
s to generate test suites [21℄. Ganai and Azizused 
overage-based te
hniques to guide a state-spa
esear
h for 
ontrol-dependent hardware [22℄.7 Con
lusions and Future WorkApplying model 
he
king to �nd errors in real programsis 
ompli
ated by the size of the state spa
e of su
h sys-tems. In other �elds where sear
h through prohibitivelylarge state spa
es is required, su
h as in AI, the use ofheuristi
s has proven to be invaluable. Here we proposethe use of heuristi
s to guide the sear
h of the JPF model
he
ker for errors in Java programs.Heuristi
 sear
h te
hniques are traditionally used tosolve problems where the goal is known and a well-de�nedmeasure exists of how 
lose any given state is to this goal.The aim of the heuristi
 sear
h is to guide the sear
h,using the measure, to a
hieve the goal as qui
kly (in thefewest steps) as possible. This has also been the tra-ditional use of heuristi
 sear
h in model 
he
king: theheuristi
s are de�ned with regards to the property be-ing 
he
ked. Here we also suggest a 
omplementary ap-proa
h where the fo
us of the heuristi
 sear
h is moreon the stru
ture of the state spa
e being sear
hed, inour 
ase the Java program from whi
h the state spa
e isgenerated.In addition to property-spe
i�
 and stru
tural heuris-ti
s we also advo
ate the use of heuristi
s the user of amodel 
he
ker 
an de�ne that are spe
i�
 to the programbeing analyzed. In JPF we provide the 
exibility to addthese heuristi
s either as external heuristi
 fun
tions oras annotations of the program being model 
he
ked.

Our experimental results show that stru
tural heuris-ti
s 
an make error �nding tra
table in some systemswhere unguided sear
hes or sear
hes using property-spe
i�
heuristi
s do not work very well. It is 
lear that stru
-tural heuristi
s 
an be useful, and the type of programbeing explored (programs with 
omplex 
ontrol 
ow orthat are 
on
urrent) is at least suggestive in making a
hoi
e of heuristi
.We believe that the 
exibility these various stylesof heuristi
s give the user is an important 
ontributionto the su

ess of model 
he
king as a tool for s
alableand eÆ
ient error-dete
tion in software systems. How-ever this 
exibility is also at the root of the biggest openproblem we 
urrently fa
e: whi
h heuristi
 will work thebest in any given 
ir
umstan
e? Our experiments do notreally give a 
lear answer to this question. Ignoring user-de�ned heuristi
s, we are already fa
ed by a dizzying ar-ray of heuristi
 options and a

ompanying parameters|e.g. shall we use a bran
h 
ounting or the interleavingheuristi
, shall we 
ombine them, do we need to addqueue-limiting, and what should the limit be? One sim-ple approa
h is to use the simplest of distributed ap-proa
hes that 
omputer networks provide and run thou-sands of model 
he
king runs with di�erent heuristi
 op-tions ea
h on a di�erent ma
hine on the network withthe hope that at least one will produ
e a positive result.A more interesting approa
h would be to learn whi
hheuristi
s would work best. Su
h an approa
h 
ould useeither the stru
ture of the program 
ode, or the resultsfrom failed model 
he
king runs to determine whi
h heuris-ti
s to use. For example, in Se
tion 4.3 we show how we
an use the results from a ra
e-analysis of the 
ode toguide the sear
h by fo
using on the threads that wereinvolved in a ra
e-violation. A further possibility wouldbe to attempt to apply algorithmi
 learning te
hniquesto �nding good parameters for heuristi
 model 
he
king.We plan to investigate these ideas further in future work.The development of more stru
tural heuristi
s andthe re�nement of those we have presented here is also anopen problem. For instan
e, are there analogous stru
-tures to be explored in the data stru
tures of a pro-gram to the 
ontrol stru
tures explored by our bran
h-
overage heuristi
s? We imagine that these other heuris-ti
s might relate to parti
ular kinds of errors as the in-terleaving heuristi
 relates to 
on
urren
y errors.Referen
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